Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
ACS Infect Dis ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602317

RESUMO

This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.

2.
Food Chem ; 450: 139331, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621310

RESUMO

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.

3.
Food Res Int ; 184: 114252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609230

RESUMO

Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.


Assuntos
Dimetilpolisiloxanos , Escherichia coli O157 , Meios de Cultura , Inocuidade dos Alimentos , Alface
4.
Food Microbiol ; 121: 104508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637072

RESUMO

Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Bovinos , Animais , Proteínas de Escherichia coli/genética , Brasil/epidemiologia , Sorotipagem , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fezes
5.
Int J Biol Macromol ; 264(Pt 1): 130533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428782

RESUMO

In this work, silver­bismuth oxide encapsulated 1,3,5-triazine-bis(4-methylbenzenesulfonyl)-hydrazone functionalized chitosan (SBO/FCS) nanocomposite was synthesized by a simple hydrothermal method. The amine (-NH2) group was functionalized by the addition of cyanuric acid chloride followed by 4-methylbenzenesulfonol hydrazide. The SBO/FCS has been characterized by FT-IR, X-ray diffraction, XPS, HR-SEM, HR-TEM, AFM, and thermogravimetry (TGA). Under the optimum conditions, the SBO/FCS sensor showed brilliant electrochemical accomplishment for the sensing of glucose and H2O2 by a limit of detection (LOD) of 0.057 µM and 0.006 µM. It also showed linearity for glucose 0.008-4.848 mM and for H2O2 of 0.01-6.848 mM. Similarly, the sensor exhibited a low sensitivity to glucose (32 µA mM-1 cm-2) and a good sensitivity to H2O2 (295 µA mM-1 cm-2). In addition, that the prepared electrode could be used to sense the glucose and H2O2 levels in real samples such as blood serum and HeLa cell lines. The screen printed electrode (SPE) immunosensor could sense the E. coli O157:H7 concurrently and quantitatively with a linear range of 1.0 × 101-1.0 × 109 CFU mL-1 and a LOD of 4 CFU mL-1. Likewise, the immunosensor efficiently detect spiked E. coli O157:H7 in milk, chicken, and pork samples, with recoveries ranging from 89.70 to 104.72 %, demonstrating that the immunosensor was accurate and reliable.


Assuntos
Técnicas Biossensoriais , Bismuto , Quitosana , Escherichia coli O157 , Nanocompostos , Humanos , Peróxido de Hidrogênio/química , Prata , Glucose , Técnicas Biossensoriais/métodos , Hidrazonas , Espectroscopia de Infravermelho com Transformada de Fourier , Células HeLa , Imunoensaio/métodos , Nanocompostos/química
6.
Food Chem ; 443: 138564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320374

RESUMO

Escherichia coli O157:H7 (E. coli O157:H7) emerges as a significantly worrisome pathogen associated with foodborne illnesses, emphasizing the imperative for creating precise detection tools. In this investigation, we developed a sensitive colorimetric biosensor for detecting E. coli O157:H7. It was constructed using a nanozyme comprised of Au@Fe3O4 NPs, which was fabricated and subsequently modified with an aptamer (Apt). The nanozyme harnesses its inherent peroxidase-like activity to facilitate the transformation of reduced TMB into its oxidized form in the presence of H2O2, resulting in a noticeable shift to a blue color. However, the presence of E. coli O157:H7 effectively diminished the absorbance of oxidized TMB. Consequently, the normalized absorbance at 652 nm demonstrates a linear decrease corresponding to concentrations of E. coli O157:H7 within the range of 101 to 108 CFU mL-1 with a low limit of detection (LOD, S/N = 3) of 3 CFU mL-1.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Colorimetria , Peróxido de Hidrogênio , Peroxidases , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos
7.
Food Chem ; 445: 138749, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368699

RESUMO

In this study, a type of luminescent porous coordination network-224 (PCN-224) in alkaline conditions was synthesized with the dramatic fluorescence enhancement by 20.4 times, which was explained by the fact that the decrease of Zr4+ content in alkaline conditions resulted in the partial recovery of the electron cloud density of 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP). Given the large overlap between the excitation spectrum of PCN-224 and the absorption band of Ag nanoparticles (Ag NPs), the coating of the Ag layer on PCN-224 triggered the fluorescence quenching effect, which was applied to "turn off" fluorescence immunoassay for sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk. The proposed immunoassay reached a low limit of detection (LOD) of 3.3 × 102 CFU mL-1, 29.7 times more sensitive than the conventional ELISA. It will provide a novel alternative strategy for sensitively detecting pathogenic bacteria in the field of food safety.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Animais , Leite/microbiologia , Prata , Imunoensaio/métodos , Microbiologia de Alimentos
8.
Food Microbiol ; 119: 104432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225040

RESUMO

Leafy greens, especially lettuce, are repeatedly linked to foodborne outbreaks. This paper studied the susceptibility of different leafy greens to human pathogens. Five commonly consumed leafy greens, including romaine lettuce, green-leaf lettuce, baby spinach, kale, and collard, were selected by their outbreak frequencies. The behavior of E. coli O157:H7 87-23 on intact leaf surfaces and in their lysates was investigated. Bacterial attachment was positively correlated with leaf surface roughness and affected by the epicuticular wax composition. At room temperature, E. coli O157:H7 had the best growth potentials on romaine and green-leaf lettuce surfaces. The bacterial growth was positively correlated with stomata size and affected by epicuticular wax compositions. At 37 °C, E. coli O157:H7 87-23 was largely inhibited by spinach and collard lysates, and it became undetectable in kale lysate after 24 h of incubation. Kale and collard lysates also delayed or partially inhibited the bacterial growth in TSB and lettuce lysate at 37 °C, and they sharply reduced the E. coli O157:H7 population on green leaf lettuce at 4 °C. In summary, the susceptibility of leafy greens to E. coli O157:H7 is determined by a produce-specific combination of physiochemical properties and temperature.


Assuntos
Brassicaceae , Escherichia coli O157 , Humanos , Contagem de Colônia Microbiana , Temperatura , Alface , Spinacia oleracea/microbiologia , Microbiologia de Alimentos , Contaminação de Alimentos/análise
9.
J Food Prot ; 87(3): 100217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184149

RESUMO

The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Animais , Bovinos , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Água/farmacologia , Carne , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Salmonella , Contaminação de Alimentos/análise
10.
J Microbiol Methods ; 217-218: 106858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38040292

RESUMO

Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Doenças Transmissíveis , Escherichia coli O157 , Nanopartículas Metálicas , Humanos , Ouro , Técnicas Biossensoriais/métodos , Água
11.
J Food Prot ; 87(3): 100210, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158047

RESUMO

Antimicrobial properties of biochar have been attributed to its ability to inactivate foodborne pathogens in soil, to varying degrees. High concentrations of biochar have reduced E. coli O157:H7 in soil and dairy manure compost, based on alkaline pH. Preliminary studies evaluating 31 different biochars determined that two slow pyrolysis biochars (paper biochar and walnut hull cyclone biochar) were the most effective at inactivating E. coli in soil. A study was conducted to determine the lowest percentages of paper and walnut hull cyclone biochars needed to reduce E. coli O157:H7 in soil. A model soil was adjusted to 17.75% moisture, and the two types of biochar were added at concentrations of 1.0, 1.5, 2.0, 2.5, 3.5, 4.5, 5.5, and 6.5%. Nontoxigenic E. coli O157:H7 were inoculated into soil at 6.84 log CFU/g and stored for up to 6 weeks at 21°C. Mean E. coli O157:H7 counts were 6.01-6.86 log CFU/g at all weeks between 1 and 6 in soil-only positive control samples. Populations in all soil amended with 1.0 and 1.5% of either type of biochar (as well as 2.0% of the walnut hull biochar) resulted in ≤0.68 log reductions at week 6, when compared with positive controls. All other concentrations (i.e., ≥2.0% paper and ≥2.5% walnut hull) inactivated ≥2.7 log at all weeks between 1 and 6 (p < 0.05). At the end of 6 weeks, E. coli O157:H7 declined by 2.84 log in 2.0% paper biochar samples, while concentrations of between 2.5 and 6.5% paper biochar completely inactivated E. coli O157:H7, as determined by spiral plating, at weeks 5 and 6. In contrast, 2.0% walnut hull biochar lowered populations by only 0.38 log at week 6, although 2.5-6.5% concentrations of walnut hull biochar resulted in complete inactivation at all weeks between 3 and 6, as assessed by spiral plating. In summary, ≥2.5% paper or walnut hull biochar reduced ≥5.0 log of E. coli O157:H7 during the 6-week storage period, which we attribute to high soil alkalinity. Amended at a 2.5% concentration, the pH of soil with paper or walnut hull biochar was 10.67 and 10.06, respectively. Results from this study may assist growers in the use of alkaline biochar for inactivating E. coli O157:H7 in soil.


Assuntos
Carvão Vegetal , Tempestades Ciclônicas , Escherichia coli O157 , Juglans , Solo , Pirólise , Contagem de Colônia Microbiana , Microbiologia de Alimentos
12.
Heliyon ; 9(12): e22961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058426

RESUMO

Prevention and control of food pathogens are important for public health and E. coli O157:H7 infections are known as one of the most important food-borne bacterial diseases transmitted to humans. Vegetables can be a major source of E. coli O157:H7 bacteria. Bacteriophages have been considered in recent years as a natural method for controlling pathogens with minimal damage to the quality of vegetables. The performance of these natural antimicrobial agents is affected by various factors including time, temperature, phage and bacterial dose, method of phage application and origin of phages. The aim of the present study was to conduct a systematic review of the works that have examined the effect of different factors to reduce E. coli O157:H7 bacteria by its specific phages and model their effect. In our study, 10 articles were chosen after applying the inclusion and exclusion criteria mentioned in the methodology. The multivariate regression results showed that time, temperature, and method of phage application revealed a positive influence on the phage function, and with each unit of increase, the E. coli O157:H7 reduction increases by 0.4 %, 3 % and 0.94 % respectively, and 6 % for phage dose, but not statistically significant (P = 0.44). In addition, commercial-type phages were more effective than wild-type phages and this result was statistically significant (Beta = 0.99; P = 0.001). The results of this study indicate that the various factors, such as temperature, time, method of phage application and type of vegetables can play an important role to reduce E. coli O157:H7 in vegetables.

13.
Microb Pathog ; 185: 106435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931825

RESUMO

Bacterial infections result in intestinal inflammation and injury, which affects gut health and nutrient absorption. Lipocalin 2 (Lcn2) is a protein that reacts to microbial invasion, inflammatory responses, and tissue damage. However, it remains unclear whether Lcn2 has a protective effect against bacterial induced intestinal inflammation. Therefore, this study endeavors to investigate the involvement of Lcn2 in the intestinal inflammation of mice infected with Enterohemorrhagic Escherichia coli O157:H7 (E. coli O157:H7). Lcn2 knockout (Lcn2-/-) mice were used to evaluate the changes of inflammatory responses. Lcn2 deficiency significantly exacerbated clinical symptoms of E. coli O157:H7 infection by reducing body weight and encouraging bacterial colonization of. Compared to infected wild type mice, infected Lcn2-/- mice had significantly elevated levels of pro-inflammatory cytokines in serum and ileum, including interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α (TNF-α), as well as severe villi destruction in the jejunum. Furthermore, Lcn2 deficiency aggravated intestinal barrier degradation by significantly reducing the expression of tight junction proteins occludin and claudin 1, the content of myeloperoxidase (MPO) in the ileum, and the number of goblet cells in the colon. Our findings indicated that Lcn2 could alleviate inflammatory damage caused by E. coli O157:H7 infection in mice by enhancing intestinal barrier function.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Lipocalina-2 , Animais , Camundongos , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Lipocalina-2/genética , Lipocalina-2/metabolismo
14.
J Agric Food Chem ; 71(44): 16807-16814, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879039

RESUMO

The contamination of food by pathogens is a serious problem in global food safety, and current methods of detection are costly, time-consuming, and cumbersome. Therefore, it is necessary to develop rapid, portable, and sensitive assays for foodborne pathogens. In addition, assays for foodborne pathogens must be resistant to interference resulting from the complex food matrix to prevent false positives and negatives. In this study, hemin and reduced graphene oxide-MoS2 sheets (GMS) were used to design a near-infrared (NIR)-responsive photoelectrochemical (PEC) aptasensor with target-induced photocurrent polarity switching based on a hairpin aptamer (Hp) with a G-quadruplex motif. A ready-to-use analytical device was developed by immobilizing GMS on the surface of a commercial screen-printed electrode, followed by the attachment of the aptamer. In the presence of Escherichia coli O157:H7, the binding sites of Hp with the G-quadruplex motif were opened and exposed to hemin, leading to the formation of a G-quadruplex/hemin DNAzyme. Crucially, after binding to hemin, the charge transfer pathway of GMS changes, resulting in a switch of the photocurrent polarity. Further, G-quadruplex/hemin DNAzyme enhanced the cathodic photocurrent, and the proposed sensor exhibited a wide linear range ((25.0-1.0) × 107 CFU/mL), a low limit of detection (2.0 CFU/mL), and good anti-interference performance. These findings expand the applications of NIR-responsive PEC materials and provide versatile PEC methods for detecting biological analytes, especially for food safety testing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Escherichia coli O157 , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , DNA Catalítico/química , Hemina/química , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/química
15.
Pathogens ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887752

RESUMO

As demands for fresh water become more competitive between the processing plant and other consumers of water such as municipalities, interest has grown in recycling or reusing water for food processing. However, recycling the processing water from a poultry plant, for example, represents challenges due to increased organic loads and the presence of bacterial contaminants including foodborne pathogens. The objective in the current study was to evaluate the inactivation of Salmonella and E. coli O157:H7 using combinations (0.5% and 1%) of sodium bisulfate (SBS) and 1% lactic acid (LA) in water and water with organic matter in the form of horse blood serum (0.3%) with exposure times of 1 min and 5 min. Pathogen reductions after a 5 min exposure time were greater than corresponding reductions after a 1 min exposure time for all acid solutions. The Salmonella counts were significantly reduced (i.e., ≥1 log-unit) in all acid solutions after a 5 min exposure time with the combination of LA + SBS acid solutions being more effective than the corresponding 2% LA solutions. None of the acid solutions were effective in reducing the E. coli O157:H7 after a 1 min exposure time. The 1% LA + 1% SBS solution was the most effective acid solution against both pathogens and was the only acid solution effective in reducing E. coli O157:H7 by at least one log unit after 5 min of exposure.

16.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863833

RESUMO

Escherichia coli O157:H7 is a common pathogenic bacterium in food and water that can pose a threat to human health. The aim of this study was to develop loop-mediated isothermal amplification (LAMP) method for the detection of E. coli O157:H7 in food based on the specific gene Ecs_2840 and to construct rapid detection kits based on the established methods. Specifically, we established two methods of real-time fluorescent LAMP (RT-LAMP) and visual LAMP with calcein as an indicator. In pure bacterial culture, the cell sensitivity and genomic sensitivity of the RT-LAMP kit were 8.8 × 100 CFU ml-1 and 4.61 fg µl-1, respectively. The sensitivity of the visual LAMP kit was 2.35 × 100 CFU ml-1 and 4.61 fg µl-1. Both kits had excellent specificity and anti-interference performance. In addition, milk inoculated with 2.26 × 100 CFU ml-1E. coli O157:H7 could be detected within the reaction time after enrichment for 3 h. The results showed that the LAMP kits were rapid, sensitive, and specific for the detection of E. coli O157:H7 in food and had good application prospects in food safety surveillance.


Assuntos
Escherichia coli O157 , Humanos , Escherichia coli O157/genética , Sensibilidade e Especificidade , Microbiologia de Alimentos
17.
Food Sci Nutr ; 11(10): 6140-6150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823148

RESUMO

Escherichia coli O157:H7 is a cause of foodborne disease and global public health issues especially in developing countries like Ethiopia. A cross-sectional study was done from January 2022 to July 2022 in Awi Zone to assess the occurrence and antibiograms of E. coli O157:H7. Abattoirs and butcher shops were selected purposively, whereas a systematic random and purposive sampling technique was employed to select study units in abattoirs and butcher shops, respectively. A total of 248 swab samples were collected, isolated, and confirmed using bacteriological culture, biochemical tests, and latex agglutination tests. Escherichia coli O1157:H7 antibiogram tests were performed using Kirby-Bauer disk diffusion method. Logistic regression was used to analyze and measure the degree of association between the presumed risk factors and E. coli O157:H7 occurrence. The overall occurrence of E. coli O157:H7 was estimated to be 8.87% and a relative higher (11.29%) occurrence of E. coli O157:H7 was recorded at butcher shops when compared to abattoirs (6.45%). All isolates were susceptible to gentamicin followed by chloramphenicol (81.81%). About 81.81% of the isolates were resistant to ampicillin and 77.23% of isolates developed resistance to two and more than two antibiotics (MDR). In conclusion, E. coli O157:H7 was detected in the study area. Thus, educating abattoir and butcher shop workers, and consumers, on hygienic handling practices and safe consumption of meat could eliminate foodborne infection associated with E. coli O157:H7 occurrence.

18.
Prog Mol Biol Transl Sci ; 200: 171-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37739555

RESUMO

Diseases due to infections by pathogenic Escherichia coli strains are on the rise and with the growing antimicrobial resistance among bacterial pathogens, including this group. Thus, alternative therapeutic options are actively investigated. Among these alternatives is phage therapy. In the case of E. coli, the combination of the well understood biology of this species and its bacteriophages represents a good guiding example for the establishment of phage therapy principles against this and other pathogenic bacteria. In this chapter, the procedures toward the development of phage therapy against pathogenic E. coli with the use of T-even group of phages are discussed. These steps involve the isolation, purification, characterisation and large-scale production of these phages, with formulation of phage cocktails for in vitro and in vivo studies. The main emphasis is made on phage therapy of enteropathogenic E. coli O157:H, which is one of the prominent human pathogens but persists as a commensal bacterium in many food animals. The implementation of phage therapy against E. coli O157:H within the One Health framework in carrier animals and for treatment of meat, vegetables, fruits and other agricultural produce thus would allow controlling and interrupting the transmission routes of this pathogen to the human food chain and preventing human disease. Examples of successful control and elimination of E. coli O157:H are given, while the problems encountered in phage treatment of this pathogen are also discussed.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Humanos , Animais , Escherichia coli , Infecções por Escherichia coli/terapia , Agricultura , Projetos de Pesquisa
19.
Heliyon ; 9(9): e19280, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662745

RESUMO

Vanillin, a plant-derived antimicrobial volatile substance, has potential microbial control applications in the food industry. However, the effect of vanillin on the food-borne pathogen Escherichia coli (E. coli) O157:H7 has not been well studied. This study aims to explore the antibacterial mechanism of vanillin against E. coli O157:H7. The minimum inhibitory concentration (MIC) and antibacterial effect of vanillin were determined by microdilution. Scanning electron microscopy (SEM) was used to observe the damage of vanillin to the cell membrane, while cell membrane potential and the leakage of nucleic acid protein were measured to explore the effect of vanillin on the membrane system. Confocal laser scanning and intracellular adenosine triphosphate (ATP) concentration determination were utilized to investigate the effects of vanillin on the energy, life, and death of E. coli. Finally, transcriptome sequencing was conducted to investigate the gene expression differences induced by vanillin treatment. The results showed that vanillin treatment effectively controlled E. coli O157:H7 with an MIC of 2 mg/mL. After treatment, damage to the membrane system, depolarization of the membrane, and leakage of nucleic acid and protein were observed. Meanwhile, vanillin treatment caused decreased ATP content and cell death. Transcriptome analysis showed that vanillin treatment significantly affected the expression of genes involved in cell membrane formation, tricarboxylic acid (TCA) cycling pathway, and oxidative phosphorylation pathway in E. coli O157:H7. In conclusion, membrane damage and energy metabolism disruption are important mechanisms of vanillin's inhibitory effect on E. coli O157:H7. This study provides new insights into the molecular reaction mechanism of vanillin against E. coli O157:H7, highlighting its potential as an antibacterial substance for preventing E. coli contamination in the food industry.

20.
Pract Lab Med ; 37: e00333, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37693632

RESUMO

Purpose: This study aimed at evaluating the performance of the Loop Mediated Isothermal Amplification (LAMP) diagnostic test, which targets the putative Fimbria protein-encoding gene (Z3276) for rapid and specific detection of locally isolated enterohemorrhagic Escherichia coli (EHEC) O157:H7. Results: A total number of 40 locally available bacteria isolates and standard strains, among them 6 entrohemorrhagic (O157:H7) and 10 entropathogenic E. coli, 7 non diarrheic E. coli strains and 13 non entrohemorrhagic shiga toxic (stx) E. coli isolates as well as 4 pathogenic non E. coli species were used to optimize and evaluate the LAMP assay. The LAMP amplified DNA samples were visualized as turbid DNA both by naked eye and gel electrophoresis followed by staining. The assay had a sensitivity of 100% (6/6), a specificity of 97.05% (33/34), and an efficiency of 97.5% (39/40). The assay was also exhibited with 100% negative predicted value and 85.7% positive predicted value. The LAMP assay was also 10-fold more sensitive than the conventional PCR assay; sensitivity was determined by serial dilution. The results of LAMP and the PCR tests showed very high agreement (k = 0.97) in the detection of the bacteria studied. Conclusion: Compared with the performance of PCR and SMAC, LAMP assay was better in terms of efficiency, rapidity and cost-effectiveness, which can be used as a point-care diagnostic test in resource-limited laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...